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Introduction

* In 2009, NCSP co-sponsored a series of benchmark
experiments with polyethylene-reflected plutonium metal

* The experiments were conducted by Sandia and LANL at
Nevada Test Site

* We performed simultaneous neutron multiplicity and gamma
spectrometry measurements of the BeRP ball reflected by 0 —
6” of polyethylene

* The primary objective was to acquire benchmark
measurements to validate a new inverse transport solver in
GADRAS, which simultaneously analyzes gamma
spectrometry and neutron multiplicity measurements

* Another objective was to publish the measurements to
validate neutron multiplicity calculations by other codes, e.g.,
MCNPX-PoliMi



Polyethylene-Reflected Plutonium Metal

e Source: BeRP ball
e Plutonium metal sphere
* 4438 g Pu
e 19.6 g/cm3(alpha phase)
* 94% Pu-239

e Reflectors

* Nesting polyethylene
spherical shells

* 0.95-0.96 g/cm3 (HDPE)
e Total thickness: 0.5-6.0in

* 6 different configurations
were measured
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Experiment Setup

* Neutron multiplicity
counter: nPod

e 15 x 10-atm He-3 counters

 HDPE moderator block
wrapped in Cd

* 0.5 m from source

* Gross neutron counter:
SNAP

e 1 x10-atm He-3 counter
* Layered HDPE/Cd moderator
e 1.0 m from source

* Gamma spectrometer:
HPGe

* 150% relative efficiency
e 1-in-thick Bi radial shield
e 2.0 m from source




Experiment Results

* The benchmark experiments helped
us identify and fix some problems S
With the GADRAS mUItiva riate Polyethylene-Rgﬂected Plutonium Metal
inverse transport solver Measorements
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* The solver correctly estimated
plutonium mass and neutron
multiplication within 10% in all 6 o S——_
cases

* The solver was used in 2009 at the
Fall Classic exercise, which helped us
identify and fix a few other problems

* The benchmark data were published
with a detailed report in SINBAD2010
now available from RSICC

* The experimental validation of the

solver was published in an invited
paper at SORMA in 2010 and in NIM
early this year




MCNPX-PoliMi Simulations

* The benchmark

measurements were also R P
used to test MCNPX-PoliMi 8 A

* Systematic errors in the A BV RN S R B/ \ S
calculations were observed

* The calculations consistently
over-predicted the mean

and variance of the CTTEATTT L
multiplicity distribution M

* The magnitude of the error /
tended to increase with [
increasing multiplication
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Errors in the Calculated Multiplicity Distributions

Deviation from

Reflector Multiplication Experiment
Mean Variance

None 4.5 4.2% 6.4%
0.5" 5.9 9.0% 14.1%
1.0" 7.8 12.8% 27.8%
1.5" 10.5 12.8% 32.7%
3.0" 16.4 12.9% 41.0%
6.0" 17.8 9.4% 26.8%

Mean and variance refer to the centroid and

width of the multiplicity distribution
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Potential Causes of Errors

 Geometry/material errors in the nPod model

* Geometry/material errors in the polyethylene reflector
models

* Inadequate correction for nPod dead-time
* Geometry/material errors in the BeRP ball model

* Errors in the nuclear data for plutonium



MCNPX-PoliMi Simulations of Reflected Cf-252

 Measurements were also

performed using a Cf-252 e e
source inside each reflector -/ AN
. / \ o

* MCNPX-PoliMi correctly R B A/
predicted the multiplicity o e o
distribution in all 6 cases o DAY i A

* This test validatedthe l, \\
geometry and material " ~ >,
models of the poly
reflectors and the nPod L S a

* Note the neutron o o -
multiplication is 1 in each “
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Source-Detector Distance

* The distance between the
BeRP ball and the nPod
was carefully controlled
and repeatedly measured

* The uncertainty in the
source-detector distance
was less than 0.5 inch

* No consistent, plausible
error in the source-
detector distance
corrected all of the
calculations
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Detector Dead-Time

* The dead-time of each He-3
counter in the nPod was ]
measured

* Each counter had a dead-time of fio |
about 2.5 pus 2

 The dead-time required to
correct the MCNPX-PoliMi
calculations was nearly 100 ps
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Plutonium Density

* The BeRP ball plutonium
mass is known within1 g

 However, the interior of the
steel cladding permits radial
expansion up to 0.027”

* The expansion is definitely
less than the maximum,
because you can feel the
plutonium rolling around in
the cladding

* No plausible change in the
plutonium density corrected

the MCNPX-PoliMi
calculations
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Plutonium Cross Sections

* MCNPX-PoliMi was
previously tested against
ESARDA benchmark
measurements of MOX

* The code accurately
predicted the multiplicity
distribution

 However, the MOX
samples used in the
benchmark had extremely
low multiplication




Pu-239 Induced Fission Neutron Multiplicity
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What if the ENDF VIl Pu-239 v is incorrect?

Deviation from Experiment

Reflector Mean Variance
Reduced Reduced
ENDF VI V elii;e ENDF VIl 7/ el';;e

None 4.2% 0.3% 6.4% -0.1%
0.5” 9.0% 3.4% 14.1% 4.4%
1.0” 12.8% 4.4% 27.8% 9.4%
1.5” 12.8% 1.3% 32.7% 3.8%
3.0” 12.9% -5.4% 41.0% -5.7%
6.0” 9.4% -10.4% 26.8% -11.6%

A reduction of only 1.1% in the ENDF

VII v dramatically reduces the error in
the MCNPX-PoliMi calculations of the
multiplicity distribution
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Conclusions

e MCNPX-PoliMi simulations of the benchmark measurements exhibited
systematic over-prediction of the neutron multiplicity distribution

* The over-prediction tended to increase with increasing multiplication

 MCNPX-PoliMi had previously been validated against only very low
multiplication benchmarks

» Every potential source of the bias (that we could conceive of) was
eliminated except for the Pu-239 v

e Avery small change (-1.1%) in the Pu-239 v dramatically improved the
accuracy of the MCNPX-PoliMi simulation for all 6 benchmark
measurements; this change appears to be within the uncertainty of the
ENDF VIl evaluation

* This observation is consistent with the trend observed in the bias
exhibited by the MCNPX-PoliMi simulations: a very small errorin v is
“magnified” by increasing multiplication

* All the evidence points to a bias in the Pu-239 v



Future Work

* Our analysis reduced the ENDF VIl Pu-239 v by a global factor of 1.1% for all
incident neutron energies

* This adjustment was estimated by minimizing the sum of squared errors for the
entire set of calculations

* In other words, we used nonlinear regression on a simple scalar correction to v
to choose the “best estimate” of the scaling factor for v

* Infact, v is a function of incident neutron energy, p(v | £), though the
functional form is debatable

* Regression methods could be used to estimate the parameters of a simple
functional form for the correction, e.g., a linear correction in energy

* | think we should communicate our findings to the evaluation committee for
Pu-239 v |E

* In addition, | would like to propose incorporation of the benchmark
experiments in the next evaluation of Pu-239 v |E

* Data assimilation methods (see Cacuci, NS&E 165, pp. 18-44, 2010) could be
used to rigorously incorporate these measurements into the evaluation
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GADRAS Inverse Solver: Initial Guess
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GADRAS Inverse Solver: Solution
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Inverse Solver Validation Test Results

Plutonium Mass (kg) Neutron Multiplication Reflector Thickness (cm)
Reflector
Estimated Actual Estimated Actual @ Estimated Actual

None 4.3 4.4 4.5 N/A b 0.0
0.5 inch 4.6 5.5 5.8 0.8 1.3
1.0inch 4.6 7.0 7.8 1.9 2.5
1.5 inch 43 > 9.9 10.4 4.2 3.8
3.0inch 4.4 15.3 16.3 7.9 7.6
6.0 inch 4.4 16.4 17.1 15.0 15.2

3 The “actual” neutron multiplication was estimated using MCNPS5.
b For the bare case, no reflector was included in the initial model.



